Hydrometeorological effects of historical land-conversion in an ecosystem-atmosphere model of Northern South America
نویسندگان
چکیده
This work investigates how the integrated land use of northern South America has affected the present day regional patterns of hydrology. A model of the terrestrial ecosystems (ecosystem demography model 2: ED2) is combined with an atmospheric model (Brazilian Regional Atmospheric Modeling System: BRAMS). Two realizations of the structure and composition of terrestrial vegetation are used as the sole differences in boundary conditions that drive two simulations. One realization captures the present day vegetation condition that includes deforestation and land conversion, the other is an estimate of the potential structure and composition of the region’s vegetation without human influence. Model output is assessed for differences in resulting hydrometeorology. The simulations suggest that the history of land conversion in northern South America is not associated with a significant precipitation bias in the northern part of the continent, but has shown evidence of a negative bias in mean regional evapotranspiration and a positive bias in mean regional runoff. Also, negative anomalies in evaporation rates showed pattern similarity with areas where deforestation has occurred. In the central eastern Amazon there was an area where deforestation and abandonment had lead to an overall reduction of above-ground biomass, but this was accompanied by a shift in forest composition towards early successional functional types and grid-average-patterned increases in annual transpiration. Anomalies in annual precipitation showed mixed evidence of consistent patterning. Two focus areas were identified where more consistent precipitation anomalies formed, one in the Brazilian state of Pará where a dipole pattern formed, and one in the Bolivian Gran Chaco, where a negative anomaly was identified. These locations were scrutinized to understand the basis of their anomalous hydrometeorologic response. In both cases, deforestation led to increased total surface albedo, driving decreases in net radiation, boundary layer moist static energy and ultimately decreased convective precipitation. In the case of the Gran Chaco, decreased precipitation was also a result of decreased advective moisture transport, indicating that differences in local hydrometeorology may manifest via teleconnections with the greater region. Published by Copernicus Publications on behalf of the European Geosciences Union. 242 R. G. Knox et al.: Effects of land-conversion in an ecosystem-atmosphere model
منابع مشابه
Historical forest baselines reveal potential for continued carbon sequestration.
One-third of net CO(2) emissions to the atmosphere since 1850 are the result of land-use change, primarily from the clearing of forests for timber and agriculture, but quantifying these changes is complicated by the lack of historical data on both former ecosystem conditions and the extent and spatial configuration of subsequent land use. Using fine-resolution historical survey records, we reco...
متن کاملEffects of the land use change on ecosystem service value
The impacts of land utilization change on the ecosystem service values in Daqing during 1995 to 2015 were analyzed based on unit area ecosystem service value of Chinese territorial ecosystem from Mr. Xie Gaodi and ecosystem service value calculation formula from Costanza. Results showed that the ecosystem service value of Daqing decreased from US $4343.1559m in 1995 to US $3824.327m in 2015, wi...
متن کاملPrediction of Land Use Change and its Hydrological Effects Using Markov Chain Model and SWAT Model
Access to current and future water resources is one of the concerned problems for managers and policymakers around the world. Because of the communication between water resources and land use, these two topics had come together in different researches. Scenarios designed in regional land planning provide the basis for analyzing the existing opportunities and making the right decisions for manag...
متن کاملLand–atmosphere coupling in El Niño influence over South America
This study addresses the role of soil moisture and its interaction with the overlying atmosphere in setting up climate anomalies over South America during El Niño years using observations as well as Atmospheric General Circulation Model (AGCM) simulations. It is found that during summertime land–atmosphere interaction is instrumental in setting the spatial pattern and sign of surface air temper...
متن کاملEffect of Rangeland Conversion to Dryland Farming on Soil Chemical Properties (Case study: Kian rangelands, Lorestan, Iran)
Land use change as the most important destructive factor in natural ecosystems is a globally problem that changes soil properties. Therefore, correct management and recognition of change aspects on each component of the ecosystem is necessary. This process causes land destruction, ecosystem instability, soil erosion, and more biological threats. Due to increasing land use conversion from rangel...
متن کامل